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SUMMARY 
Unsteady viscous flow around a large-amplitude and high-frequency oscillating aerofoil is examined in this 
paper by numerical simulation and experimental visualization. The numerical method is based on the 
combination of a fourth-order Hermitian finite difference scheme for the stream function equation and a 
classical second-order scheme to solve the vorticity transport equation. Experiments are carried out by a 
traditional visualization method using solid tracers suspended in water. The comparison between numerical 
and experimental results is found to be satisfactory. Time evolutions of the flow structure are presented for 
Reynolds numbers of 3 x lo3 and lo4. The influence of the amplitude and frequency of the oscillating motion 
on the dynamic stall is analysed. 
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INTRODUCTION 

The flow around an oscillating aerofoil has been for a long time one of the main interests of those 
concerned with unsteady separation and dynamic stall. If the angle of attack of an aerofoil 
oscillates around the static stall angle, large hysteresis develops in the aerodynamic force and 
moments. A great deal of research has been carried out on this phenomenon during the last 
decade, mostly in the form of wind tunnel and water tunnel experiments. A description of the 
mechanism of dynamic stall in the case of pitching aerofoil can be found in Ham' and Martin et 
aL2 The transient forces and moments are fundamentally different from their static counterparts 
and cannot be reproduced when neglecting the unsteady motion. Theoretical works on the 
subject fall into two main classes. 

The first one is based on potential flow with or without boundary layer interaction. In such a 
method some parameters have to be determined from experimental measurements. These 
methods are highly empirical and are similar to identification methods. Ham' and Baudu et aL3 
tried to model the main vortex-shedding process with potential vortices. However, these methods 
are not complete in the sense that some assumptions have to be made on the separation point: 
location, instant of appearance, incidence of the aerofoil. Unsteady boundary layer analysis gives 
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some qualitative information on the dynamic stall delay and hysteresis but is not able to give 
insight into the initial vortex formation and the start of the dynamic stall. 

The second class is the numerical resolution of the full unsteady Navier-Stokes equations. The 
inherent limitations of potential theory and boundary layer theory can be overcome by using the 
Navier-Stokes equations. Unless special modelling is used, this approach is limited to laminar 
and transitional flows. Metha4 has studied the problem of a pitching oscillating NACA0012 
aerofoil for Reynolds numbers up to lo4. Kinney and Cielak’ and Wu and Sampath6 have 
considered the same problem but for lower Reynolds numbers. These calculations are generally 
limited to low reduced frequency, low mean incidence and low oscillating amplitude. 

Besides these theoretical and numerical investigations, some experimental visualizations were 
achieved by WerlC and Gallon’ and more recently by Ohmi and c o - w ~ r k e r s . ~ ~ ~  Another 
important experimental work on this subject was carried out by Carr et a l l 0  Their analysis of the 
stall hysteresis, although not entirely quantitative, presents some of the most important pheno- 
mena concerning the initiation of the dynamic stall and the effect of the main experimental 
parameters. 

The aim of this paper is to analyse with the help of both numerical simulation and experimental 
visualization the unsteady separation around an oscillating aerofoil at high angle of attack, high 
reduced frequency and high amplitude of oscillation. A comparison between the numerical results 
and the experimental visualizations is reported and shows good agreement. 

PHYSICAL EQUATIONS 

Definition of the motion 

Throughout this study the pitching motion of the aerofoil will be defined by the angle of attack 

u = ii + Au * COS(~~$* 0 
where f is the physical time andfis the frequency of the oscillation. The pitching axis is located 
either at the half-chord or at a third-chord from the leading edge. The aerofoil is placed in an 
incoming flow with uniform velocity U ,  at infinity. 

We are interested in the the transient flow generated by the impulsively started translating and 
oscillating motions of the aerofoil. 

Governing equations 

All the variables are made dimensionless with respect to the half-chord c /2  of the aerofoil and 
the uniform velocity of the flow at infinity, U,.  The main non-dimensional parameters of the flow 
are: 

Reynolds number Re =U,c/v 

mean incidence U 

Amplitude of the oscillation Au 

reduced frequency f =c32U, 

reduced time t =2u,z/c .  

- 
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In an inertial frame of reference O x y  translating with the aerofoil (see Figure l), the Navier- 
Stokes equations in vorticity function 0, and streamfunction Y ,  formulation are 

- -+V-(o,V,) =v20,, 
Re(aq 2 at ) 

V 2 y I = 0 , ,  (2) 
where o,k = V x V,, V, = k x VY,, V, is the velocity and k is the unit vector orthogonal to the O x y  
plane. 

Let O x y  be a frame of reference which rotates with the aerofoil. Let R be the angular velocity, V 
be the relative velocity in Oxy and o be the relative vorticity. Then 

V,=V+R x r ,  0, = 0 + m. 
The relative stream function Y is defined by 

Y ,  = Y + Rr2/2. 

The vorticity transport equation (I) becomes 

Re dR aw 
2 dt at 

--(2- +-+V*(oV) 

and the streamfunction Y satisfies 

V2Y = 0. 

Figure 1. Sketch of the configuration 
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The boundary conditions for the streamfunction Y are 

V Y  = 0 on the aerofoil, 

VY- - i+Rk x r when r2=x2+y2+cn. 

The initial conditions are those of an impulsively started motion. 

order to avoid large values of Y when r + w .  The Navier-Stokes equations then read: 
The calculations are actually done in the rotating frame Oxy, using the functions Yl and wl in 

"{ 2 3 at +A[ ay wl;( Yl - 3 1  - ;[ wl;( Y] -%)I} = v2w,, 

TRANSFORMED EQUATIONS 

The domain outside the aerofoil in the rotating plane z=x+iy is mapped by a conformal 
mapping onto the exterior of a circular cylinder, which in turn is mapped by the exponential 
mapping onto a semi-infinite strip 10, .o[ x [O, 21 in a plane t; = 5 + iq: 

E2 

exdal;) + Y z = exp(7cl;) + y + - c, 

where o defines the location of the pitch axis and E defines the thickness of the aerofoil. The line 
< =O in the computational plane represents the aerofoil wall. 

Let h2(<,  q )  be the conformal mapping modulus. In the (5 ,  +plane the Navier-Stokes equa- 
tions are 

2 { h2 3 at + aq A[ CD 1$( Yl - y ) ] - $[ w1$( Y I - y )  ] } = vt, ,,o,, (7) 

where V;,,, stands for t32/a<z + a2/av2. 

Boundary conditions 

On the surface of the aerofoil the no-slip condition is the only available physical condition: 

on l = O  (9) 

In view of the fourth-order compact scheme which will be used to solve the Poisson equation of 
the streamfunction, numerical boundary conditions for Y and its second derivative on the wall 
are needed. These conditions are derived from (9), which allows us to set Y =O on the wall, and 
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from the Poisson equation written on the surface of the aerofoil: 

A t  injnity the computational domain has to be limited in the (-direction. So, at a sufficiently 
long distance (, of the aerofoil, the flow is assumed to be irrotational almost everywhere, except 
in a downstream area where open boundary conditions have to be set in order to enable the wake 
to flow through this artificial boundary. In a previous paper by Ta Phuoc and Bouard" such a 
condition has been established: the viscous effects are assumed to be negligible compared with the 
convective one, which requires the vanishing of the total derivative of the vorticity w1 on 5 = 5,: 

A similar form has been used by Lugt and Haussling16 in which the real velocity is replaced by the 
uniform velocity at infinity. 

In order to get a complete set of boundary conditions, it will be assumed that at 5 ,  the 
following relation holds: 

This relation means that the normal derivative of the inertial tangential velocity is assumed to 
vanish at [=<,. In the part of the outer boundary outside the wake the values of the 
streamfunction Y1 and its derivatives will be deduced from the assumption of irrotational flow. 

In all the computations this downstream area is defined by 

- ~ / 6  < 8 < ~ 1 6 .  

NUMERICAL METHOD 

The numerical algorithm is a combination of two schemes: a fourth-order compact scheme for the 
resolution of the Poisson equation and a second-order scheme for the resolution of the vorticity 
transport equation. It was proposed by Ta Phuoc, Daube and co-workers". 13* l4 and has proved 
to be efficient for a large class of incompressible viscous flows. 

Outline of the fourth-order compact scheme 

Following Hirsh,' the fourth-order accuracy is achieved by 'compact' relations relating the 
values of a function and its derivatives on a three-point stencil. In counterpart, it is necessary to 
introduce the second derivatives of \y as supplementary unknowns. This scheme is based upon 
the following relations. 
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Let Ax be the constant spatial discretization step and leth,f::,fl be the values of the functionf 
and its derivatives at node i. The following tridiagonal relations hold: 

(14) 
12 

Ax2 f;- + 1 Of; +f;+ = -( fi + - 25 +fi - ) + O(Ax"). 

The knowledge of Y ,  and its second derivatives from relation (10) on the boundaries enables us to 
use these relations. 

The combination of the Poisson equation (8) and the relation (14) yields a linear system which 
is solved by means of an AD1 algorithm for elliptic equatiomi6 The two half-steps of the kth 
iteration of the AD1 procedure are given below. 

First half-step 

Second half-step 

The coefficients Akq and d k t  are optimum convergence parameters and were proposed by 
Wachspress.I6 

Once the values of the streamfunction Y ,  are known, the values of its first derivatives are 
calculated through the use of the relation (1 3) together with boundary conditions (9). These 
calculations involve only the resolution of tridiagonal systems. 

Vorticity transport equation 

A second-order-accurate scheme has been chosen to solve this equation. This choice is 
motivated by the difficulties which arise when trying to use a fourth-order compact scheme as in 
the case of the Poisson equation of the streamfunction. In fact no physical boundary conditions 
are available for the vorticity and afortiori for its first and second derivatives. Moreover, it is 
possible with a second-order scheme to use the conservative form of the transport equation. The 
time-marching procedure is a classical Peaceman-Racheford one. Each time step is split into two 
half-steps. Integration in the V-direction is performed during the first half-step and integration in 
the t-direction during the second half-step. Let n and n + 1 be superscripts denoting the values of 
variables at time nAt and (n + 1)At respectively. Using centred differences, the two half-steps are 
written as below. 
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First half-step 

The ?-direction being the 'tangential' one, the boundary conditions which are used for the 
vorticity are derived from the periodicity condition 

4 l o  = 4 2 , t )  vt. 
Second half-step 

h . .  I - 24': + _ _  Re ( U " W ; * ) ~ ~ +  - ( U " O ; * ) ~ ~ -  = Re&$';  + 
At b2 4 A? 

, 

where 

On the aerofoil the so-called Woods condition is used: 

At infinity, for points outside the downstream area defined earlier, the flow is assumed to be 
irrotational, i.e. m(ta,q) = 0, while in the downstream area the relation (11) is used. 

EXPERIMENTAL ARRANGEMENTS 

The visualization experiments were conducted in a vertical tank with a square cross-section 
(90 x 90 x 180 cm3). The tracers are thin macromolecular particles called Rilsan. The advantage of 
using these particles lies in the fact that less problems arise for the orientation of reflection than 
with aluminium particles. The representative size of a particle is between 80 and 200 pm. The 
motion of the tracers is visualized by a sheet of intense arc light which illuminates the median 
vertical cross-section of the tank. The aerofoil translates vertically in the tank and its speed is 
controlled by a hydraulic driving device which is connected to a variable resistance dash pot. The 
camera is fixed to a carriage which translates at the aerofoil speed. Thus the visualizations are 
made in the inertial frame translating with the aerofoil. An electric winding device enables 
photographs to be made at regular time intervals. The pitch oscillation is generated by a 
connecting rod mechanism via which the rotation of a pulley, coupled with the translation of the 
carriage, is transformed into the desired motion. The angular displacement is a sinusoidal 
function of time. 

RESULTS AND DISCUSSION 

The aerofoil which has been considered is a NACA0012 aerofoil pitching around an axis located 
at a third-chord from the leading edge. The calculations have been achieved for two values of the 
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Reynolds number, Re = 3 x lo3 and lo4. A systematic study of the influence of the different 
parameters of the oscillating motion on the dynamic stall development is given. All calculations 
are compared with experimental visualizations. 

Throughout this section t* will denote the dimensionless time normalized with respect to the 
chord of the aerofoil instead of the half-chord. The frequencyf* has the same definition as 'f' 

RETNOLOS = 3000 RLPHR = 30 ORLPHR = - 7  RETNOLOS = 3000 A L P H A  = 30 ORLPHA = - 7  

t* = 0 . 2 5  ANGLE = 23.31(2590 t *  = 0 . 5 0  A N G L E  = 2'4. 336868 

RETNOLOS = 3000 RLPHR = 30 ORLPMR = - 7  

t* = 0 . 7 5  RNCLE = 25.885'498 

RErNOLDS = 3000 RLPHA = 30 onLPnR = - 7  

t* = 1 . 2 5  RNCLE = 29.999985 

RETNOLOS = 3000 RLPHR = 3 0  ORLPHR = - 7  

t*  = 1 . 0  ANGLE = 2 7 . 8 3 6 8 6 8  

O R L P H R  = - 7  R E Y N O L O S  = 3000 RLPHR = 30 

t* = 1 .50  ANGLE = 32.153101 

/------ 

Figure 2(a) 
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given earlier. 

Re = 3 x lo3 

The characteristics of the flow past an oscillating aerofoil are mainly determined by the relative 
magnitude of the oscillating motion with respect to the translation rate of the incoming flow. This 

AETNOLOS * 3000 ALPHA = 30 ORLPHA = - 7  RE'INOCOS = 3000 R L P H R  = 30 oRLPnA = - 7  

RNGLE - 35.663101 t* = 1 . 7 5  ANGLE = 39.11U971 t *  = 2 .0  

REYNOLDS = 3000 ALPHA = 30 OALPHA = - 7  

t* = 2 . 2 5  ANGLE * 3 6 , 6 5 7 3 7 9  

AETNOLOS * 3000 ALPHR = 30 DRLPHA : - 7  

ANGLE = 37.000000 t* = 2.50 

REYNOLOS 3000 ALPHA = 30 ORLPHA - -7 

t* = 2 . 7 5  ANGLE - 35.65739 '4  

AETNOLOS = 3000 ALPHA * 30 OALPHA = - 7  

t* = 3 . 0  ANGLE = 3 5 . 6 6 3 1 3 2  

Figure 2(b) 
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effect can be characterized by the reduced frequency!* and the amplitude Act. For Re = 3 x lo3 
we will focus on the effects of these two parameters on the flow generation and on the onset and 
development of the leading edge and trailing edge vortices. 

Injluence of the reduced frequencyf*.  Three values of the reduced frequency are considered 
here: f* = 0.1, 0.5 and 1. The mean value E of the oscillating angle LY is set to 30" which 

AETNOLOS * 3000RLPHR = 30 OALPHR = - 7  

ANGLE - 3 9 . I I Y 5 1 7  t* = 3 . 5 0  

RLTWOLOS * 3000 RLPnR 30 oetrnu = - 7  

t*  - 3 . 7 5  RNGLE - 30.000031 

REINOLOS = 3000 RLPnR - 30 otxPnR = - 7  

t *  - 3 . 2 5  RNGLE = 3 2 . 1 6 3 1 4 7  

RETNOLOS = 3000 RLPHR = 30 0uLi-m I - ?  

RNCLE * 27.836899 t *  - 4 . 0  

REINOLOS = 3000 RLPHR = 30 ORLPHR * - 7  

RNGLE * 25.885529 
t*  - 6 . 2 5  

R E T N O L O S  - 3000 i L P n R  = 30 o w p n r i  = - I  

t* = 4 . 5 0  ANGLE = 2U.336899 

. 

Figure 2(c) 
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corresponds to a deep static stall. The amplitude of the angular oscillation is 7" and the initial 
angle of incidence is 23". 

f* = 0.1. This reduced frequency is the lowest value which will be considered in this study. It 
corresponds to a low ratio between the translational velocity of the flow and the rotational 

RErNOLDS = 3000 ALPHR = 30 OALPHR = - 7  RETNOLOS = 3000 ALPHA = 30 ORLPHR = - 7  

t* 4 . 7 5  ANGLE = 2 3 . 3 9 2 6 2 1  t* = 5 . 0  ANGLE = 23.oaoooo 

RETNOLDS = 3000 ALPHR = 30 ORLPHA - 7  

t* - 5 . 2 5  ANGLE - 23.3112575 

REINOLOS * 3000RLPHR = 30 ORLPHA = - 7  

RNGLE = ~ u . 3 3 6 . m  t* = 5 . 5 0  

REINOLOS = 3000 ALPHR - 30 OALPHA - - 7  

t* = 5 . 7 5  ANGLE I 25.88SVS2 

REINOLOS I 3000 ALPHA = 30 OALPHR = - 7  

t *  = 6.0 ANGLE = 2 7 . 8 3 6 8 0 7  

Figure 2. Time evolution of the flow structure; Re = 3000,f* = 0.1, a = 30", Aa = -7", 5,  = 0.72324 
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Figure 3(a) 
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Figure 3(b) 
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Figure 3(c) 
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Figure 3. Time evolution of the flow structure; Re = 3000,f* = 0.1, a = 30’, Aa = -7”, a,, = 23 

velocity of the aerofoil. The numerical solution was computed on an 81 x 101 grid and with a time 
step equal to lop2. The time evolution of the flow structure is reported in Figures 2(a)-2(d). 
Comparison between these results and the experimental visualizations (Figures 3(a)-3(d)) shows 
good agreement. For t* < 1 a small separation bubble can be observed on the upper surface in 
the vicinity of the leading edge. This phenomenon is seen in both calculations and visualizations. 
The appearance of secondary vortices takes place at about t* = 1.5 in the experiments and at 
about t* = 1.75 in the calculations. The vortices seem slightly more developed in the visual- 
izations than in the calculations. These discrepancies are mainly due to the grid which was used. 
However, it must be emphasized that all vortices seen in the visualizations are also reproduced by 
the numerical simulation. 

f * = 0.5. This reduced frequency corresponds to a large ratio between the rotational and 
translational motions. The visualizations (Figures 4(a) and 4(b)) were achieved in the same 
experimental conditions as in the previous case. The numerical simulations were performed on 
the same grid but with a time step equal to 5 x instead of lo-*. 
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Figure 4(a) 



VISCOUS FLOW AROUND AN OSCILLATING AEROFOIL 

Figure 4. Time evolution of the flow structure; Re = 3000,f* = 0 5 ,  a = 30". Aa = -7, a,, = 23 

907 
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Two distinct vortex systems are shed from the leading and trailing edges. They are parallel to 
each other with opposite rotation. The separation zone on the upper surface is larger and more 
irregular than that for f* = 0.1. The trailing vortices, which are generated alternately on the 
upper and the lower surfaces, have a larger intensity. The frequency of these vortex sheddings is 
the same as the oscillation frequency. At the leading edge a vortex appears only on the upper 
surface. This vortex grows, moves downwards along the extrados and combines eventually with 

RETNOLOS * 3 0 0 0 A L P H A  = 30 OALPnR = - 7  

t*  = b.25 RNGLE * 2 9 . 9 9 9 9 8 5  

RLTNOLOS = 3000 ALPliR = 30 oRtPnR = - 7  

t* = 0 . 5 0  ANGLE = 37.nonnnn 

M T N O L O S  * 3000 ALPHA - 30 ORLPHR = - 7  RETNOLOS = 3000 ALPHR = 30 ORLPIIR = - 7  

t* - 0 . 1 5  ANGLE * 30.000031 t *  = 1.0 ANGLE = 2~.noonnn 

ORLPHR * - 7  RElNOLOS - 3000 RLPHR = 30 ORLPHR . - 7  RETNOLOS = 3000 ALPHA = 30 

t*  - 1 . 2 5  RNGLE = 29.999939 t *  = 1 . 5 0  ANGLE = 37.000000 

/-- 

Figure S(a) 
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the trailing edge vortex, giving the two vortex sheddings in the wake. These phenomena can be 
seen in both experimental (Figures 4(a) and qb)) and computational(Figures 5(a) and 5(b)) results. 

f* = 1.0. In this case the velocity of the aerofoil edges is about three times that of the incoming 
flow. The flow structures observed in this case are similar to those obtained forf* = 0.5 but are 
much more irregular. Vortices appear alternately on the upper and the lower parts of the leading 

REINOLOS = 3000 ALPHA - 30 OALPHR = - 7  REINOLOS a 3000 ALPHR = 30 QALPHA = - 7  

t *  = 2 . 0  RNGLE = 23.onoooo t* = 1 . 7 5  ANGLE * 30.000076 

OALPHR = - 7  REINOLOS - 3000 ALPHA = 30 OALPHA * - 7  REINOLOS = 3000 ALPni  . 30 

RHGLE * 37.oot-1000 t* - 2.25 ANGLE = 29.999893 t* - 2 5 0  

OALPHR 9 - 7  RLINOLOS - 3000 ALPHI7 30 OALPHR * - 7  RLIYOLOS I 3000 ALPHA = 30 
t* = 2 . 1 s  ANGLE - 30.000183 t* = 3.13 RYGLE . 23.oonoo~ --- 

Figure 5. Time evolution of the flow structure; Re = 3000,f* = 05, a = 30", Aa = - 7", 5,  = 0.72324 
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Figure 6(a) 
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Figure 6. Time evolution of the flow structure; Re = 3000,f* = 1.0, 51 = 30”, ha = -7”, a,, = 23 

91 1 
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edge. As in the casef* = 0.5 the vortex shedding has the same frequency as the oscillaton motion 
of the aerofoil. 

Experimental visualizations are presented in Figures 6(a) and qb), which numerical results are 
reported in Figures 7(a) and 7(b). Some discrepancies can be seen, in particular for t* > 3. The 
flow structure becomes irregular and the tridimensional effects are no longer negligible. 

OALPMR = - 7  RETNOLOS = 3000 RLPHR = 30 oRLPMR - 7  REINOLOS = 3 0 0 0 R L P n A  = 30 

t *  = 0.50  ANGLE 23.onoooo ANGLE = 37.000000 t* = 0 . 2 5  

ORLPMR = - 7  RElNOLOS = 3000 ALPMR * 30 ORLPnR x - 7  R ITNOLOS 9 3 0 0 0 R L P H R  = 30 

' t*  = 0 . 7 5  RNCLE - 31.000000 t *  = 1.0 ANGLE = z~ .oonooo 

DRLpnR - 7  RETNOLOS . 3000 RLPHR . 30 ot+Lrnn = - 7  
ncwoios = 9000 ALrnn = 30 

t* = 1.50 ANGLE 2 z3.nonnno ANGLE = 37.000000 
t* = 1 .25  

/ 

Figure 7(a) 
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RfTNOLOS = 3000 RLPHR = 30 ORLPHR = - 7  R E Y N O L D S  = 3000 R L P H R  = 30 ORLPHR i - 7  

t* = 2.0 RNGLE = 23.000000 t* = 1 . 7 5  RNGLE = 37.000000 

REYNOLDS = 3 0 0 0 R L P H R  30 ORLPHR = - 7  RETNOLOS = 3000 RLPHR i 30 oRLPna = - 7  

RNGLE = 23.000000 t* = 2 . 5 0  RNGLE = 37.000000 t* = 2 . 2 5  

-- 
Figure 7. Time evolution of the flow structure; Re = 3000,f* = 1-0, a = 30", Aa = - 7", (, = 0.72324 

The calculations were carried out on an 81 x 121 grid and the time step was taken equal to 
These numerical and experimental analyses of the influence of the reduced frequency 

demonstrate that the vortex shedding frequency in the wake is the largest value between the 
natural frequency for the flow around an aerofoil with fixed incidence and the frequency of the 
oscillating motion. 

Figure 8 gives an example of the drag (CX), lift (CY) and moment (CM) coefficients and shows 
the importance of hysteresis effects when dynamic deep stall cases are considered. 

ZnjZuence of the amplitude of the oscillation. Two values of the amplitude and of the mean angle 
of attack will be considered here. It appears that the angular amplitude generally has a small 
influence on the formation and development of the vortex shedding. For a given frequency similar 
types of stall can be observed whatever the angular amplitude. A detailed analysis of these 
phenomena is reported in Ohmi.g 

Re = lo4 

For this Reynolds number the reduced frequencyf* is always equal to 0.5. The mean value of 
the angle of attack was chosen to be 30" and the angular amplitude 7". These low values allow us 
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N A C A l 2  8 1 * I O l  R = 9 . 7  Fc1.O R E Y N O L D S = 3 0 0 0  
A L P H A = 3 0  D A L P H A z - 7  

CX ANG CY ANG 

- 2  
al* t* 

N A C A l Z  8 1 * I O l  R=9.7 F=I.O R E Y N O L D S = 3 0 0 0  

A L P f I A = 3 0  D A L P H A = - 7  

N A C A l Z  E l * i O l  R=9.7 F=l.O R H Y N O L D S = 3 0 0 0  

A L P H A = J U  DALPHA= - 7 

CM ANG 

2 . r  t "  

-1 

(i 

0 I 2  3 4 5 6 

Figure 8. Evolution with time of the drag C X ,  lift C Y  and moment C M  coefficients 

to use a moderate number of nodes in the computations: a grid with 81 x 121 nodes and a time 
step equal to were used. Comparison between numerical results (Figure 9(ak9(c)) and 
experimental visualizations (Figures l q a )  and 10(b)) shows good agreement for t* up to 4. 
However, it may be noticed that the vortices are slightly more developed in the experiments than 
in the numerical simulation. 

CONCLUSIONS 

Numerical and experimental results presented in this paper demonstrate that a numerical 
resolution of the unsteady Navier-Stokes equations is able to describe in a correct manner the 
flow generated by a simultaneously translating and pitching aerofoil. Analysis of the influence of 
the different parameters shows the following: 

1. The Reynolds numbers considered in this paper do not have a major effect on the flow 
structure around the oscillating aerofoil but influence rather the phase lag and the hysteresis 
character of the wake. 

2. The flow a t f *  = 01  is characterized by the upper surface flow generated during the two 
phases of increasing and decreasing incidence. The increase in incidence gives rise to an 
accelerated formation of secondary vortices which hastens the displacement and shedding of 
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leading edge vortices. The reduction of incidence produces trailing edge vortices which 
prevent the expansion of the viscous interaction area. 

3. The flow at f* = 0.5 presents a rather stable vortex-shedding system at both leading and 
trailing edges. The leading edge throws out co-rotative vortices in a regular manner, 
probably because the rolling-up caused by the ascent of the leading edge is of the same 
dynamic scale as the natural growth of leading edge bubbles. The main interest of the flow 

RETNOLOS = 10000 ALPHA = 30 ORLPHR = - I  R E i w  n s  = inono R I  pt in = 3n DRLPHR = - I  

t *  = 0 . 2 5  RNGLE = 29.999985 t *  = 0 . 5 0  Rt lGL E = 3 1 .  O O f l o ~ J O  

- ~- 

n w p m  = - 7  RETNOLOS * IOOOORLPHR = 30 DRLPHR = - 7  REIN01  05 = 10000 RLPHR = 30 

R t m E  = 23.ooonno t *  = 1.0 t* = 0 . 7 5  ANGLE = 30.000031 

DRLPHR I - 7  RETNULOS - IIJOUORLPHA = 30 ORLPHR = - 1  HE rNUl  US f I0000 YI  PHR = 30 

RNGLE * 29.999939 t *  = 1.50 RNGLE = ~i.nnnono t*  = 1 .25  

---- 
Figure 9(a) 
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features remains still in the upper surface flow, but one recognizes trailing edge vortices 
rolling up alternately into the upper surface and lower surface flows. 

4. The main characteristic of the flow at f* = 1.0 is a strong rolling-up towards the upper 
surface flow which encloses completely the leading edge bubbles. The bubbles are then 
unable to grow normally with periodic supply of vorticity and instead form a single vortex 

o A L p n n  . - 7  REIN~LDS = 10000 ALPHA = 30 ORLPHR = - 7  
RETNOLOS * I O O O O A L P M A  * 30 

RNGLE = 23.000000 
t* - 1 .75  ANGLE - 30.000076 t* = 2 . 0  

ORLPHA = - 7  RE'INOLOS = 10000 A L P H A  * 30 
t* = 2 . 2 5  ANGLE - 29.999893 

REIN(1LIlS = 10000 ALPHA = 30 OALPHR * - 7  

ANGLE = 37.000000 
t* = 2 . 5 0  

t* = 2 . 7 5  ANGLE = 90.000183 

7 

IIElNOLflS = 10000 IlLPIlR = 30 O A L P l l R  . - 7  

AtIGLE * 23.000000 t*  - 3 . 0  

Figure 9(b) 
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cell which goes through gradual growth inside the enclosure. The strong rolling-up also 
causes a prominent flow reversal process which initiates from the leading edge and travels 
downstream. 

5. The mean incidence and the angular amplitude of the oscillation do not have a definitive 
effect on the qualitative behaviour of the unsteady separation as long as the former remains 
clearly in excess of the static stall incidence. Nor is the maximal incidence a major factor 

ORLPHR = - 7  RETNULOS = I0000 R L P n A  = 30 DRLPHR : - 7  
REINOLDS - I0000 RLPHR = 30 

RIlGLE - 31.000000 t* = 3.25 RNGLE = 29.999758 t* = 3.50 

RETNOl n S  = 10000 RLPHR = 30 ORLPHR = - 7  R E  IHOI 11s = ioonn ni PIIR = 30 ORLPHR z - 7  

t*  = 3 . 1 5  ANGLE = 30.000168 t* = 4.0 Rt4C.I.E = 23. 00flfl00 

R E I N f l l  ns = innno HLPIIR = 3n ORLPIIR = - 7  

ANGLE 29.999771 
t* = 4.25 

Figure 9. Time evolution of the flow structure; Re = lW,f* = 0.5, a = 30", Aa = -7", c, = 0.72324 
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Figure 1qa) 
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Figure 10. Time evolution of the flow structure; Re = 10000,f* = 0.5, a: = 30”, Act = -7”, a, = 23 

here. Needless to say, some quantitative estimates such as force coefficients and vorticity 
cannot be reached through visualizations and need some support from the numerical 
computations. 
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